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Renormalisation on Sierpinski-type fractals 
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Lehrstuhl fur Theoretische Chemie, Technische Universitat Munchen, Lichtenbergstrasse 
4, D-8046 Garching, West Germany 

Received 13 April 1984 

Abstract. We present a family of deterministic fractals which generalise the d-dimensional 
Sierpinski gaskets and we establish their order of ramification and their fractal and spectral 
dimensions. Random walks on these fractals are renormalisable and lead to rational, not 
necessarily polynomial, mappings. 

Fractal structures, both deterministic as the Sierpinski gaskets, and stochastic as the 
percolation clusters at criticality, have currently been a subject of intensive investigation 
(Mandelbrot 1982, Alexander and Orbach 1982, Gefen et a1 1980, 1984). Applications 
include linear and branched polymers (Havlin and Ben-Avraham 1982), epoxy resins 
(Alexander et a1 1983), amorphous and porous materials (Heifer and Avnir 1983, 
Klafter and Blumen 1984) and aggregates constructed by diffusion-limited growth 
(Witten and Sander 1981, Vicsek 1983). Fractals of lattice type, consisting of sites 
connected by bonds, are valuable model systems for many theoretical purposes, 
including the study of phase transitions or modelling transport phenomena. Since 
dynamical processes are determined by the fractal and spectral (fracton) dimensions 
(Alexander and Orbach 1982) it is very important to find classes of deterministic fractals 
in which these dimensions may be easily adjusted to applications through simple 
parameter changes. 

In this letter we investigate new classes of fractal structures: these are generaiisations 
of the d-dimensional Sierpinski gaskets. Here we present their construction, determine 
their order of ramification and calculate exactly their fractal and spectral dimensions. 
To evaluate the latter we renormalise the master equations which govern random walks 
over the structures. We find a large class of fractals in the dimensional range between 
one and two. The calculations are carried out through matrix-inversion techniques. 
For several cases we also present closed-form analytic expressions for the renormalisa- 
tion mappings, which, distinct from the pure Sierpinski case, are not necessarily 
polynomials. 

In the study of fractals the Sierpinski gaskets embedded in d-dimensional Euclidean 
space (Urysohn 1927, Mandelbrot 1982, Gefen et a1 1984) are well suited both for 
analytical considerations (Gefen et a1 1981, 1984, Rammal 1984, Domany et a1 1983) 
and for numerical simulations (Angles d’Auriac et a1 1983, Blumen et a1 1983). We 
note that the gaskets determined by d are members of a more general family of fractals 
characterised by an additional integer b, ( b  2 2). Both parameters determine the 
generator G(6, d), which is the basic geometrical unit from which the fractal is iteratively 
constructed (Mandelbrot 1982). The generator G(b, d)  is a d-dimensional hypertetrahe- 
dron of side length b which is itself filled with b layers of smaller hypertetrahedrons 
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of unit side length, In figure 1 we display such geometrical units in two dimensions 
(d = 2) for the cases b = 2, 3 and 4. 

Using G(b, d )  the fractal is built up iteratively: One obtains the structure at stage 
n + 1 by enlarging G(b, d )  by b" and then filling all upward pointing hypertetrahedrons 
with the stage-n structure. We exemplify this procedure for G(3,2), for which we 
display in figure 2 the result of two iterations (i.e. the structure is at stage n = 3). In 
the limit n + 03 the whole fractal is obtained. We remark that the Sierpinski gaskets 
result from this construction as the special case b = 2 .  For general b, b > 2 ,  the 
connectivity properties of the fractals differ from the Sierpinski gaskets in that the 
number z(ri) of nearest neighbours of each site ri is not constant over the lattice, 
whereas for b = 2  one has z(r i )=2d for all i. 

Figure 1. Geometrical units G(6, d)  (generators) for 
different 6-values in two dimensions (d = 2). 

Figure 2. Two-dimensional fractal structure with 6 = 
3 at the third stage ( n  = 3) of the construction. 

We start our study of the geometrical properties of the fractals with the connectivity 
z(r i ) .  Defining R,,, = max z ( r i ) ,  where the ri  vary over the lattice, one has R,,, = bd 
for b G d + 1 and R,,, = d ( d  + 1) otherwise, whereas the minimal value of z(ri) is 2d. 
The minimal number of sites which disconnect any interior point from the rest of the 
fractal is, as in the Sierpinski-gasket case, Rmin = d + 1. Rmin and R,,, are in fact the 
orders of ramification for the infinite structure as defined by Mandelbrot (1982) and 
obey R,,, 3 2( Rmin - 1) (Urysohn 1927). We note that for b > d + 1 we have 

Rmax = b(Rmin - 1). (1 b) 

For Sierpinski gaskets (b = 2) (1 b) defines the quasihomogeneity (Mandelbrot 1982, 
ch 14). 

A further characterisation of the fractal is provided by the Hausdod dimension 
d This dimension is related to the density of sites belonging to the fractal (Mandelbrot 
1982). Here we have: 

b a = l i m [ N ( b , d ;  n + l ) / N ( b , d ;  n)] 
n-m 

where N(b, d ;  n )  is the number of sites of the structure at stage n. The N(b, d ;  n) 
fulfil the recursion relation 

N(b, d ; n + 1)= N(b, d ; 1) + N ( b  - 1, d ;  l)[N(b, d ; n)-(d + l)] (3) 
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as may be verified from the construction. From the generators one reads off: 

where the right-hand side denotes the binomial coefficient. From (2) and (3) N(b, d ;  n) 
can be expressed in closed form as: 

N ( b , d ;  n ) = F " ( l  + d / b ) - ( l - F - ' ) - ' ( F " - ' - l ) ( d - d / b )  (4) 

with F = ( b + j - ' ) .  For the Sierpinski gasket (b = 2) (4) reduces to (Rammal 1984) 

N(2, d ;  n) = $(d + l)[(d + 1)" + 13 .  

However, from (2) and (3) it follows directly that 

b J = N ( b - l , d ; l )  ( 5 )  

so that 
a = l n (  b + d - 1  )/ln b. 

The dynamical properties of a fractal are determined by the spectral (fracton) 
dimension d' (Alexander and Orbach 1982, Rammal and Toulouse 1983); in general 
this quantity is different from the fractal dimension d. Under the name 'effective 
dimensionality', the spectral dimension was already introduced and studied by Dhar 
(1977). If we denote by p ( w )  the density of normal modes of the fractal, one has for 
low frequencies w :  

p ( w ) -  w 2 - l  

(Dhar 1977, Rammal and Toulouse 1983). The dimension d' also appears in diffusion 
or random walk problems on the fractal. For d < 2  the average number of sites S,, 
visited by a random walker on the lattice during an n-step walk is governed by d' 
(Rammal and Toulouse 1983, Blumen et a1 1983): 

The higher moments of the distribution of sites visited by the walker also depend on 
t_he spectral dimension (Angles d'Auriac et a1 1983, Blumen er a1 1983). Furthermore 
d turns up in the solution of the Schrodinger equation on fractals (Domany et a1 1983). 

In this letter we determine d' from the long time behaviour of continuous time 
random walks on the fractals. 

Consider now a nearest-neighbour random walk starting at the origin ro at time 
t = 0. The probability P(r,, t )  to find the walker at site ri at time t obeys the master 
equation 

where the sum runs over all r, that are nearest neighbours to r, and the w, are the 
transition probabilities per unit time from rJ to r,. We specify the w , ~  through the relation 

(7) 
where w is a constant transition rate, and where, as before, z ( rJ )  is the coordination 
number of rT This choice emerges naturally from the discrete-time analogue of the 

z(rJ)wtr = w = constant 
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random walk in which the walker steps at fixed times to one of its z(r i )  nearest 
neighbours with equal probabilities. As mentioned, in general z(r i )  is not constant 
over the lattice, so that for b 2 3 the transition rates wv are not symmetric. 

Laplace-transforming (6) and using the initial condition P(ri,  0) = &,, we get our 
transformed equation 

Here we set a := -U/ w, which is a dimensionless quantity. Writing (8) in matrix 
notation, the right-hand side involves the symmetric adjacency matrix of the fractal 
and a diagonal matrix containing the coordination numbers, while the left-hand side 
is diagonal. 

Equation (8) turns up in many physical fields. As a mechanical analogue the sites 
are occupied by masses, which are connected along the bonds through springs of 
strength k. The site dependent transfer rates then translate into site dependent masses 
mj = z(rj)m which are multiples of a unit mass m. The variable P(rj, U) is the Fourier- 
transformed transversal displacement of the mass at 5, while a corresponds to mu’/ k. 
Note, however, that in this case the inhomogeneous term -8,,,,J w in (8) is generally 
missing. The electrical analogue consists of a network where each lattice bond has 
the resistance R and each lattice site is grounded to a common potential via a site 
dependent capacitor Cj = z(rj)C. Now a = -iuRC and P(rj, U) is the Fourier-trans- 
formed node potential. 

We proceed to analyse (8) and apply a renormalisation procedure, which reduces 
the number of variables by inverting the iteration process through which the fractals 
were generated. In one step of the renormalisation procedure one eliminates all interior 
sites from the generators contained in the gasket, such that the smallest hypertetrahe- 
drons left have side length b instead of 1. Figure 3 illustrates this for the case b = 3, 
d = 2. In the following we distinguish notationally between deleted sites di and 
surviving sites si. Algebraically the removal of the interior sites is performed by 
expressing the P(di, U) in terms of the P(q ,  U) and inserting the results into the equations 
for the P(q,  U). For long times the solutions to the original system (8) can be approxi- 
mated by the solutions of a reduced (albeit formally similar) system of equations 
involving only the si, provided the transfer rates and the probabilities are suitably 
adjusted. The spectral dimension follows then from the asymptotic behaviour of 
P(ro, t), where ro is the starting site of the walk. For convenience, we choose ro to be 
one of the si, so that ro is not eliminated in the first decimation step. 

Figure 3. One step of the renormalisation transformation for b = 3 and d = 2. 

We now consider an arbitrary surviving site so with coordination number z(so)= 
Id (2 s 1 S d + 1) and let G(b, d) be one of the 1 generators to which so belongs. The 
remaining corners are denoted s,, . . . , sd and the M = N - d - 1 inner sites of G(b, d) 
are labelled d , ,  . . . , dM beginning with the d nearest neighbours of so, such that so, di 
and si are collinear (1 s i s d). The problem is most clearly formulated in terms of 
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the normalised probabilities Q(ri, U)= P(riy u ) / z ( r i ) .  We collect the Q(ri, U) into two 
vectors QI = (Q(di, U), , Q ( ~ M ,  U)) and Q2(Q(so3 U), 

Considering only the equations for the interior sites di we have from (8): 
. , Q(Sd ,  U)). 

[( 1 - a ) D  - A I 1 QI = A2 9 2 .  (9) 

In this equation D is a diagonal M x M-matrix whose entries are (D) i ,  = z(ri) .  The 
matrices A I  and A2 are submatrices of the adjacency matrix A of G(b, d). The 
M x M-submatrix A ,  is obtained from A by eliminating the rows and columns corre- 
sponding to corners of G(b, d), while the M x ( d  + 1)-submatrix A2 is obtained through 
elimination of d + 1 rows corresponding to the comers and M columns corresponding 
to interior sites. In all our cases ( D  - A , )  is invertible and we can solve (9) for one of 
the nearest neighbours of so, say dl,  giving 

where 

g ( a ) = [ ( D - A l - a D ) - 1 A 2 ] l l  and h i ( a ) = [ ( D - A l - a D ) - 1 A 2 ] l , i + l .  ( lob)  

We now use the symmetry of G(b, d) under the cyclic group of rotations generated 
by R, where the rotation R of G(6, d )  is defined through its action on the corners 

RsO = SO, RSd = SI, R s ~  = si + 1 f o r l s i s d - 1 .  (11) 

Operating with R j-times on (lo), i.e. using R’, gives 
d 

Q(d,+I, U)= Q(R’d1, ~ ) = g ( a ) Q ( s O ,  U > +  1 hi(a)Q(R’si, U >  (12) 
i = l  

and thus we get by summing (12) 

where 
d 

h(a )=  hi((Y). 
i = l  

We have thus expressed the Q(di, U) for the nearest neighbours of so in terms of 
the Q(si, U). The result holds for each of the I generators to which so belongs. Equation 
(8) for P(so, U) reads in terms of normalised probabilities 

where we distinguish sites in the different generators by upper indices k, 1 s k d 1. 
Inserting (13) into (14) the result can be recast as 

I d  

-~,*sO/[wh(a>l+ 141  - 44a)lQ(so, U) = c c Q@:, U) (15) 
k = l  i = l  

with 

d(a)= 1 -{[I - a - g ( a ) l / 4 a ) } .  (16) 
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We see that (14) and (1 5) are similar, and that the effect of the renormalisation consists 
in replacing w by wh(a) and a by +(a).  In (16) the coordination number Id has 
dropped out, which means that +(a)  is independent of the choice of so. This result 
is due to the judicious choice for the transfer rates wik 

To proceed further we consider the situation at longer times. In terms of a = -U/ w 
this corresponds to the limit a + 0. Moreover, at longer times the physical situation 
is characterised by quasi-stationarity inside each generator G(b, d ) .  In equilibrium, 
say at t =CO, one has from (6) and (7) 

P( ri, t ) /  z( r i )  = P(rj, t ) /  z( rj) = constant (17) 

and therefore for U = 0: 

Q ( r ,  U = 0) = Q(r,, U = 0) = constant. 

That (1 8) is indeed a solution to (9) with a = 0 is immediately evident by inspection. 
Inserting (1 8) into ( 1  0) we find 

d 

1 = g(0) + 2 hi(0) = g(0) + h(0). (19) 
, = I  

Therefore, with (16) one has +(O) = 0. By construction + ( a )  is a rational function of 
a and thus +(a)  = ~a +O(a2)  with K = 4’(0). 

Furthermore, we find h(0) = N / K ,  where N = N ( b  - 1, d ;  1)  is the number of hyper- 
tetrahedrons inside the generator G(b, d ) .  The physical reason for the appearance of 
N is the requirement of probability conservation: the sum of the interior P(di,  t )  is 
redistributed on the P(si ,  t ) .  Performing this redistribution for the special case (17) 
leads immediately to N. We are now able to consider (15) for a around 0. Because 
in this region we have +(a)= KCY and h ( a ) =  N / K ,  we find that (15) for the quantities 
NQ(s,, U) and the rates W / K  is identical to (14). Herewith the renormalisation of our 
system of equations is completed. 

We turn now to the determination of the spectral dimension d‘. For random walks 
d’ can be determined from the probability to be at the origin P(ro,  t), since at longer 
times one has (Alexander and Orbach 1982) 

P(r0, t )  - ( I /  w t p *  

which renormalised reads 

NP(r,,, t )  - ( K /  wt)‘” 

and thus 

i.e. d’ = 2 In N / l n  K .  (20) 
d / 2  N = K  , 

The value of K can be computed via K = N / [ 1  - g(O)], while N is given in ( 5 ) .  This 
procedure is advantageous, since for g ( 0 )  only a single row of the matrix ( D  - A ) - ’  is 
needed, namely (lob). 

Symmetry arguments entered the above considerations, and we use them again to 
reduce the number of equations in (9). We have to analyse only one generator G(b, d ) ,  
so that we take so as origin, so = (0, . . . , 0), placing the coordinate axes along the edges 
of G(b, d ) ,  thus sI = (b, 0,. . . , O), . . , sd = (0,. . . , 0, b). The set of sites in G(b, d )  
supports a natural equivalence relation, which carries over to the corresponding 
probabilities. The equivalence class {ri} of a site ri are all sites which obtain by 
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permuting the coordinates of ri. We then call the sum Qi a class variable: 

Q i =  C Q(r j ,  U). 
r,e{rtl  

Using the equivalence relation { a }  we treat explicitly the case b = 3 for arbitrary 
d. In this case (9) reduces to a system in at most five class variables for the internal 
sites of G(b, d). As representatives ri for the Qi we take (1,0, . . . , 0) for Ql, (2,0, . . . , 0) 
for Q2, (1,2,0, .  . . ,0) for Os, (1,  1,0, .  . . ,0 )  for Q4 and (1, 1, 1 ,0 , .  . . ,0) for Q5. Class 
Q5 appears only for d 2 3. The coordination number for the representatives of Q, ,  Q2 
and Q, is 2d and for Q4 and Q5 it is 3d. We set Qo= Q(so, U) for the corner at the 
origin and Q6 for the other comers, represented by (3,0, . . . , 0). With Q = ( Q1, . . . , Os) 
and Y = (-dQo, -Q6,  -(d - l)Q6, O,O), equation (9) takes the form CQ = Y with: 

2 d a - d - 1  1 0 2 
2da - 2d 1 2 

d - 1  2 d a - d - 1  2 
d - 1  d-1 1 3 d a - d - 4  3 

(21) 

0 0 d - 2  d - 2  3da -9  

From (21), after some lengthy algebra, the mapping 4 ( a )  follows 

+ ( a ) = a ( d  +2-2da)(4d +6-6da)-'[(2d +8-6da)(d +2-2da)-3(d - l)]. (22) 
For Sierpinski gaskets, b = 2, one has after symmetrisation only two class variables, 

and 4 ( a )  is a polynomial, 4 ( a )  = a ( d  +3 -2da). For both b = 2 and b = 3 the values 
a = 0 and a = CO are fixed points. For b = 3 three additional fixed points and a simple 
pole at a = d- '  +2/3 appear, and we have 

K = 4'(0) = (d +2)(2d2 +9d + 19)/(4d +6) 

which with ( 5 )  and (20) gives 

- 2 ln[(d + l)(d +2)/2] 
d =  

ln[(d +2)(2d2 +9d + 19)/(4d +6)]' 

For b = 2 one has d' = 2 ln(d + l)/ln(d +3), so that in both cases limd+m d = 2. 
In figure 4 we display the spectral dimensions d' for b = 2 and b = 3 as a function 

of d. In both cases the convergence to the limiting value 2 is evident. For fixed d, the 
values of d' for b = 3 lie above those for b = 2; with increasing d the difference between 
the &values first increases to a maximum (0.056 at d = 4) and then decreases. 

To evaluate 4 ( a )  and d' for b 2 4  we proceed numerically and make use of the 
formulation in terms of class variables. As above one has to solve a system of coupled 
equations for G(b, d )  leading to an expression for the class Ql of nearest neighbours 
of so. The vector Y in (21) has only three non-zero components. This is due to the 
fact that the corners so, sI, . . . , sd are connected to only three classes of sites. The first 
is the class of nearest neighbours to so represented by (1,0, . . . , 0). The nearest 
neighbours of sI, . . . , sd fall into two classes, the first being represented by ( b  - 
1, 0, . . . , 0), the other by ( b  - 1, 1,0, .  . . , 0). To calculate 4 ( a )  it is therefore sufficient 
to compute three elements of C-l. For different values b 3 3 and 2 s  d s 6 we have 
determined 4( a) numerically using an algorithm for the generalised eigenvalue problem 
(Moler and Stewart 1973) and calculating four determinants as functions of a. 
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The values of d' for different d and b are summarised in the table 1. For b = 3 we 
recover numerically the exact results, (23). To display the data we plot in figure 5 the 
spectral dimension as a function of d and b. The &values are more affected by changes 
in d than in b. In all cases d' = 2 is the upper limit. From our results, with a judicious 
choice of both b and d, we can adjust d flexibly. We remark that we have further 
generalised the class of fractals discussed here by combining for fixed d generators 
with different b-values to form a new generator. We thus obtain a dense set of &values 
in the interval 1.365 d' 6 2.0, thereby allowing us to fix d' with arbitrary accuracy. 

. .  . .  . .  2 . .  
d.6 

. ' 5  

4 

3 

2 
,..* .. 

1 2 s  
5 10 20 50 100 2 5 10 

d b 

Figure 4. Spectral dimensions d for fractals as a 
function of the Euclidean dimension d with 6 = 2 
and b = 3. 

Figure 5. Spectral dimensions d obtained by matrix 
inversion as a function of b for 1 s d s 6. 

Table 1. Values of the spectral dimension d for the fractals constructed-from G(b, d ) .  

b d 2  3 4 5 6 

2 1.3652 1.5474 1.6542 1.7233 1.7712 
3 I .4032 1.6002 1.7104 1.7783 1.8234 

5 I .447 I I A594 1.7700 1.8334 1.8728 
6 1.4617 1.6783 
7 I .4734 1.6933 
8 I .4833 1.7056 
9 1.4917 1.7160 

10 1.4990 I .7249 

4 I .4285 1.6346 1.7456 1.8114 I .a534 
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Summarising, we have discussed a new class of fractals which generalise the 
Sierpinski gaskets, and have determined their fractal and spectral dimensions exactly. 
Their renormalisation mappings are rational, not necessarily polynomial functions, 
and thus lead to new mathematical aspects. The fractals have a finite order of 
ramification and are of site-and-bond type. Insofar they offer new possibilities for 
choosing structures with prescribed properties and can serve as useful models in 
physical applications. 

We thank Professor G L Hofacker, Dr J Klafter and Dr G Zumofen for fruitful 
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